
Brooklyn Law Review
Volume 67
Issue 2
THE SECOND CIRCUIT REVIEW: 2000-2001
TERM

Article 10

12-1-2001

The Future of Computing Software in the Reverse
Engineering War: Excessive Protection v.
Innovation
Barbara J. Vining

Follow this and additional works at: https://brooklynworks.brooklaw.edu/blr

This Note is brought to you for free and open access by the Law Journals at BrooklynWorks. It has been accepted for inclusion in Brooklyn Law Review
by an authorized editor of BrooklynWorks.

Recommended Citation
Barbara J. Vining, The Future of Computing Software in the Reverse Engineering War: Excessive Protection v. Innovation, 67 Brook. L. Rev.
567 (2001).
Available at: https://brooklynworks.brooklaw.edu/blr/vol67/iss2/10

https://brooklynworks.brooklaw.edu/blr?utm_source=brooklynworks.brooklaw.edu%2Fblr%2Fvol67%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://brooklynworks.brooklaw.edu/blr/vol67?utm_source=brooklynworks.brooklaw.edu%2Fblr%2Fvol67%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://brooklynworks.brooklaw.edu/blr/vol67/iss2?utm_source=brooklynworks.brooklaw.edu%2Fblr%2Fvol67%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://brooklynworks.brooklaw.edu/blr/vol67/iss2/10?utm_source=brooklynworks.brooklaw.edu%2Fblr%2Fvol67%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://brooklynworks.brooklaw.edu/blr?utm_source=brooklynworks.brooklaw.edu%2Fblr%2Fvol67%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://brooklynworks.brooklaw.edu/blr/vol67/iss2/10?utm_source=brooklynworks.brooklaw.edu%2Fblr%2Fvol67%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages

THE FUTURE OF COMPUTER SOFTWARE
IN THE REVERSE ENGINEERING WAR.

EXCESSIVE PROTECTION V INNOVATION*

INTRODUCTION

Computer programs have become increasingly prolific
throughout the duration of the ongoing technology boom. With
this proliferation, copyright law has been pushed to the limits
in an attempt to balance the fear of excessive protection with
the desire to encourage innovation. Recently, the scope of these
lints has been further challenged by the process of reverse
engineering.' Reverse engineering of computer software may be
accomplished through black box analysis, disassembly, or the
clean room process. 2 Of these three methods, disassembly has
been at the heart of most recent software litigation.
Disassembly involves making intermediate copies of a
computer program and subsequently translating the program
from machine-readable object code to human-readable source
code. Since copyright law gives the copyright owner the
exclusive rights to reproduction, derivative works, and
distribution,3 the overarching question is whether the practice
of reverse engineering can be accommodated by current
copyright laws. 4

©2001 Barbara J. Vinmg. All Rights Reserved.
1 The United States Supreme Court has defined reverse engineering as

a means of "starting with the known product and working backward to divine the
process which aided in its development or manufacture." See Kewanee Oil Co. v. Bicron
Corp., 416 U.S. 470, 476 (1974); tnfra Part I.B.

2 See Betsy E. Bayha, Reverse Engmeering of Computer Software tn the United
States, the European Unwn, and Japan, C137 ALI-ABA 175 (1995).

3 See 17 U.S.C. § 106 (2001).
4 Reverse engineering does not really raise a question of legality under

current copyright law. Legality only becomes an issue to the extent that the ambiguity
inherent in the Act makes it unclear whether reverse engineering is legal. The real

BROOKLYN LAWREVIEW

This Note analyzes the copyright law issues raised by
reverse engineering of computer programs. 5 Section I presents
an overview of computer programs and reverse engineering
processes and the key legal issues raised. Section II provides
an examination of current copyright law governing computer
programs, both within the Umted States and abroad, and how
it has developed through relevant case law Section III
analyzes the ambiguity surrounding the current body of law
and how this ambiguity affects the arguments underlying both
the innovation and protection premises. Finally, Section IV of
this Note posits an amendment to current copyright law by
setting limits on the reverse engineering process. In particular,
this Note proposes that current copyright laws be amended to
address reverse engineering by expressly advocating black box
analysis and allowing disassembly only as a function of the
clean room process. The proposed statutory guidelines are
tailored to permit enough reverse engineering to encourage and
allow innovation of computer software while providing
copyright owners with a modicum of additional protection. By
explicitly allowing reverse engineering in a modified form, the
proposal effectively encourages both innovation and
competition without bestowing copyright owners with excessive
protection, thus allowing the software industry and the public
to benefit.

question is whether the Act was intended by Congress to include and allow reverse
engineering or whether the Aces silence on the matter reflects no conferral of a reverse
engineering right in respect to computer software.

5 Although this Note addresses reverse engineering only with respect to its
effect on competition within the computer software market, reverse engineering does
serve other functions. Reverse engineering is used, for example, to teach students how
to write programs, to repair malfunctiomng software, and to modify a program for
one's own computer. See, e.g., Brian C. Behrens & Reuven R. Levary, Legal Aspects-
Software Reverse Engineering and Copyrght: Past, Present and Future, 31 J.
MARSHALL L. REV. 1 (1997).

[Vol. 67: 2

THE REVERSE ENGINEERING WAR

I. BACKGROUND

A. Computer Programs

Computer programs are created by writing line-by-line
instructions directing the operation of the computer. Whether
the instructions are written alphanumerically or strictly
numerically, a computer programmer is ultimately able to
instruct a computer, through writing and combining lines of
instructions, to perform various tasks and execute various
functions.

6

When displayed alphanumercally, these instructions
are collectively referred to as "source code."'7 Source code is
written in a high-level computer programming language that
can be read and understood by humans.8 In addition to the
actual instructions that comprise the final program, a
programmer writing in a computer programming language can
add comments and labels to procedures within the program.
The advantage of using comments and labels is that the
functionality of specific instructions, or the thoughts of the
programmer, can be documented for future reference or
modification.

Upon completion, the source code is subsequently
compiled into "object code" that is understood and executed by
a computer.9 Object code is displayed simply as binary "zero"
and "one" digits. The purpose of tins binary code is to relay to a
computer whether switches in the computer chip should be

6 For example, a line of code might instruct the computer to multiply any two

digits entered from the keyboard and to display the results. Or, a simple instruction
might be one that tracks the movement of the mouse pointer and displays its
coordinates on the screen for the user to follow. A computer program integrates
instructions and allows the computer to perform larger functions, such as word
processing, or may even create an entire operating system.

7 For a thorough discussion of software development, see Andrew Johnson-
Laird, Reverse Engineering of Software Separating Legal Mythology from Actual
Technology, 5 SOFIVARE L.J. 331, 336 (1992).

8 Some of the more common high-level computer programming languages
include COBOL, FORTRAN, BASIC and C. See id.

9 Id. Based on the programming language used, a corresponding program will
compile the alphanumerical source code written by the programmer into the binary
object code used by the computer.

20011

BROOKLYN LAWREVIEW

"off' or "on," respectively 10 Each individual line of
alphanumeric source code is converted into corresponding
numerical strings of zeroes and ones upon compilation. A
compiled program appears as a continuous series of binary
digits covering numerous (usually, hundreds or thousands of)
pages, and is thus overwhelming and often incomprehensible
for humans. Thus, while a programmer could write an entire
program in binary code, programmers normally write computer
programs in a high-level computer programming language.

B. Reverse Engineering Processes

Since the actual source code of a functioning program is
not often available, programmers frequently engage in reverse
engineering to gain knowledge about how a particular program
functions. A programmer can utilize reverse engineering to
create an interoperable or competing program by determining
the specifications and functions of the original program.
Whether the ultimate goal is to create a new program to
interoperate with existing programs," or to compete for the
same users by producing either an improved or altogether new
program, numerous methods of reverse engineering exist.12

While some methods of reverse engineering are more legally

10 See Greg Weiner, Reverse Engineenng as a Method of Achieving Compa-
tibility in the Computer Industry, 6 U. BALT. INTELL. PROP. L.J. 1, 2 (1997).

11 For example, a programmer may reverse engineer the program that
operates a video game console in order to create a new video game that can run on the
existing console. By determining how the particular console functions, the programmer
can write new code using the specifications necessary to allow the game and console to
interoperate. In order for any two programs to achieve interoperability, the proper
interfaces and protocols must be accurately used. See Johnson-Laird, supra note 7, at
338.

12 Two classic techniques are black box reverse engineering and the process of
dismantling, testing, and observation. Additionally, there are various ways to read
programs stored in computers or on other media out of the machine into a form that is
meaningful and readable by a human being, including reading specifications and
manuals, reading stored programs with a debugger program, reading ROMs,
disassembly, and the clean room process. See G. Gervaise Davis, III, Scope of
Protection of Computer-Based Works: Reverse Engineering, Clean Rooms and
Decompilation, 370 PRACTISING LAW INSTITUTE: PATENTS, COPYRIGHTS, TRADEMARKS,
AND LITERARY PROPERTY COURSE HANDBOOK SERIES TLI/PAV') 115, 145 (1993). This
Note will only address the more relevant and abundant reverse engineering methods of
computer software: black box analysis, disassembly, and clean room process.

[Vol. 67- 2

THE REVERSE ENGINEERING WAR

controversial than others, there are key legal issues common to
all reverse engineering processes.

1. Black Box Analysis

Black box analysis is a classic method of reverse
engineering that allows programmers to discover the
functiomng of a program through extensive observation. The
desired information about how a device functions is obtained
by inputting data to the device and then observing the
outcome.13 Through the iterative process of altering the input
and observing the result, it may be possible to ascertain how
the original device functions. In this way, later users can
determine their own way of accomplishing the same functions
without ever having looked at the underlying source or object
code of the software involved. 14 Moreover, the reverse engineer
avoids the use of intermediate copies of the software of the
original device. 15 Although not challenged by allegations of
illegality, black box analysis is so simplistic as to be rather
umpractical. In light of the complexity and length of today's
computer programs, it is oftentimes not feasible or possible to
determine the functioning of a program by mere observation.

2. Disassembly

Disassembly is an increasingly common and effective
way to reverse engineer computer software. Ultimately
represented as binary or hexadecimal digits in ROM or disk
version, programmers engage in disassembly to gain access to
the source code in which the original program was written. 6

By translating backwards from virtually unintelligible object
code to more easily understood source code, the reverse
engineer can read and study the original program. The process

13 See Bayha, supra note 2, at 179.
14 See id.
15 See id.
16 Most computer programs are stored on disk or m ROM m the hardware.

The ROM or disk version is simply a physical representation of binary digits that must
be converted into a human readable form for study. Davis, supra note 12, at 148.

20011

BROOKLYN LAWREVIEW

of disassembly involves copying the object code version of a
program from the ROM or disk version onto the screen or onto
paper. The object code is then converted, or disassembled, into
a sort of "virtual source code." 17 Although this virtual source
code is more easily read by humans than the object code, it is
vastly different from the original source code written by the
software's designer. 18 When the source code is imtially
compiled, only those lines which contain instructions to the
computer are converted to object code; any of the original
comments and labels that the programmer may have used to
explain certain aspects of the program or to identify parts of
the program are lost and thus unavailable upon disassembly 19
In comparison to black box analysis, with an increase in
practicality and effectiveness comes an increase in challenges
of illegality Unlike black box analysis, disassembly inexorably
involves the making of interim copies of copyrighted computer
programs.

3. The Clean Room Process

The clean room process is a method of reverse
engineering that may employ black box analysis or
disassembly or both.20 The first step is to develop a set of high
level specifications or criteria necessary to develop a program
compatible with or functionally identical to the original
program.21 This information is gleaned from available manuals
and specifications or possibly by performing black box analysis.
Additionally, it may be necessary to disassemble the original
program in order to facilitate the analysis. The resulting

17 Bayha, supra note 2, at 180.
18 'The metamorphosis of human readable source code into computer

executable programs strips off too much information for it to be reversed." Johnson-
Laird, supra note 7, at 346.

19 Programmers often include comments in the source code during the
development of a program to explain what certain portions of code do or to signal
potential problems m the code for later reference. Labels are often chosen and used by
programmers to set-off portions of the code or as obvious "dummy" names for different
functions of the program. Dummy names are labels given to specific procedures or
functions that denote its obvious purpose, i.e., a procedure named
AddAllEvenNumbers, which adds all even numbers entered by the user.

20 See Bayha, supra note 2, at 180.
21 See zd.

[Vol. 67- 2

THE REVERSE ENGINEERING WAR

specifications or criteria are to be free from any of the
"expression' of the original program or decompiled code. 22

The first step is achieved by reverse engineer
programmers who are considered to be "dirty," having studied
the original program and written this set of guidelines. 2 The
next step is to hand off these specifications to a team of "clean"
programmers who have never seen or been exposed to the
original program.2 4 This clean team now programs new code
from the specifications and criteria based only upon the high
level specifications. The "clean" and "dirty" programmers must
not be permitted to communicate directly.25 By prohibiting the
two independent teams of programmers from direct
interaction, the clean programmers presumably will not be
tainted by access to the original program. If and when
questions arise, they are dealt with in writing and through an
intermediary, usually a lawyer knowledgeable of reverse
engineering and copyright law issues.26 Considering that this
reverse engineering process can, and often does, involve
disassembly, it too faces the consequent legal issues.

4. Legal Issues Inherent in All Reverse Engineering
Processes

The basis of most legal questions surrounding reverse
engineering arises from the fact that the process requires
reading, which requires copying. Reading an existing, and
presumably copyrighted, computer program requires making a
copy of it, first in the memory of the computer and then on the
screen or on paper.27 Reverse engineering also raises legal
issues regarding the right to make emulations and interim
copies. 28 At minimum the right to read and to copy, if necessary
to read, appears to be a right recognized by both the courts and

22 See d.
23 See Davis, supra note 12, at 151.
24 See Bayha, supra note 2, at 181.
25 Davs, supra note 12, at 151.
26 Se~e d.
2 7 See supra Part I.B.2.
2 8 See Davis, supra note 12, at 157.

20011

BROOKLYN LAWREVIEW

the legislature.29 In the subsequent sections of this Note,
arguments for both the legality and illegality of reverse
engineering of computer software will be addressed and
analyzed.

II. COPYRIGHT LAW AND COMPUTER PROGRAMS

A. Statutory Developments

1. The Umted States

While there are numerous ways in which programmers
can protect computer software, the main vehicle for preventing
the copying of a computer program is through the protections
provided by copyright law 30 Computer programs have been
copyrightable subject matter since 1978, when the Copyright
Act of 1976 became fully effective.81 Congress further amended
the Copyright Act in 1980 to explicitly reconfirm that computer
programs are copyrightable subject matter.3 2 Under the

29 See id. at 154-55 (citing Justice O'Connor and the authors of the

CONTU Report (for a description of CONTU, see infra note 32)).
30 Other means of protection for computer programs are outside the scope of

this Note. See, e.g., Ronald L. Johnston & Allen R. Grogan, Trade Secret Protection for
Mass Distributed Software, 11 COMPUTER LAW. 1 (1994) (discussing the case for trade
secret protection for the internal design of widely distributed software); Mark A.
Lemley & David W O'Brien, Encouraging Software Reuse, 49 STAN. L. REV. 255 (1997)
("the primary means of legal protection for computer software has shifted from
copyright to patent').

31 See H.R. REP. No. 1476, at 116 (1976), reprinted in 1976 U.S.C.C.A.N. 5731,
5731 (stating that literary works protected under section 102(a)(1) of the Copyright Act
include computer programs) [hereinafter H.R. 94-1476].

32 Congress created a committee, the National Commission on New
Technological Uses of Copyrighted Works ("CONTU"), to analyze the law in light of
emerging technologies and to propose amendments to the copyright law that would
better protect computer programs. In accordance with CONTU's recommendation that
computer programs be added to § 101 of the Copyright Act, Congress amended the
Copyright Act m 1980 to explicitly reconfirm that copyright protection extends to
computer programs by adding the definition of "computer programs" to § 101. In
addition, CONTU recommended the substitution of a new § 117 that now awards
copyright owners of computer programs a right to make limited adaptations or
modifications to their program and to make back-up copies of the program. See

[Vol. 67: 2

THE REVERSE ENGINEERING WAR

current statutory scheme, the Copyright Act provides
protection for "original works of authorship fixed in any
tangible medium of expression."8 These "original works"
include "literary works," which are defined as "works, other
than audiovisual works, expressed in words, numbers, or other
verbal or numerical symbols or indicia, regardless of the nature
of the material objects in which they are embodied."3 4

Although computer programs are not explicitly included in the
statutory definition, it is well established that computer
programs are protected as literary works.35

The Copyright Act provides protection only for the
expression of ideas, not for the ideas themselves. 36 This concept
has been codified in § _102(b) of the Copyright Act, which
provides that "[i]n no case does copyright protection for an
original work of authorship extend to any idea, procedure,
process, system, method of operation, concept, principle, or
discovery, regardless of the form in which it is described,
explained, illustrated, or embodied in such a work."3 7

Therefore, subsequent users are free to copy and utilize the
ideas in a copyrighted work, provided the original expression is
not likewise appropriated.38

generally CONTU Final Report on New Technological Uses of Copyrighted Works
(1979) [hereinafter CONTU Final Report] (on file with author); Pamela Samuelson,
Creating a New Kind of Intellectual Property: Applying the Lessons of the Chip Law to
Computer Programs, 70 MINN. L. REV. 471, 474-75 n.12 (1985).

33 17 U.S.C. § 102(a) (1990).
34 17 U.S.C. § 101 (1990).
35 See supra note 31 and accompanying text.
36 For example, think of the well-known video game Pac-Man. Expression of

the particular characters are protectable and would not have been created but for the
original programmer. However, the idea of a character navigating around a maze and
collecting various items, while avoiding adversaries, is not protectable. This concept is
called the idea-expression dichotomy. See Baker v. Selden, 101 U.S. 99, 102-03 (1879).
Congress has made clear that this dichotomy applies with equal force to computer
programs. See H.R. REP. No. 94-1476, supra note 31, reprinted in 1976 U.S.C.C.A.N. at
5670. As a matter of policy, creative expression is protected by copyright to encourage
initial innovation while ideas are not protected by copyright to encourage subsequent
innovation and competition. See discussion znfra Part HI.

37 17 U.S.C. § 102(b) (1994).
38 Exceptions to this general rule are the doctrines of merger and scenes d

faire. If only one way, or a limited number of ways exist to express an idea, the idea
and the expression are considered to have merged and there is thus no protectable
expression. Scenes d faire, on the other hand, demes copyright protection to literary
elements that are considered to be inevitably associated with a theme or plot. See
Arthur W. Fisher & Yvonne Reyes, Copyright Protection for Computer Software, 477

2001]

BROOKLYN LAWREVIEW

In the case of computer programs, it is especially
difficult to bifurcate the idea-expression dichotomy 3 9 This
fundamental determination initially depends upon the ability
to separate the literal and nonliteral elements of a computer
program.40 The literal code of a program is considered
protected expression. Verbatim copying of literal code is thus a
copyright infringement. Nonliteral, or functional, elements of a
computer program, generally referred to as the structure,
sequence, and orgamzation ("SSO"),41 are protected by
copyright laws as well. One of the purposes of protecting
nonliteral elements of a program is to prevent later developers
from evading infringement by simply making minute changes.
The overall determination of infingement necessarily relies
upon the degree of similarity two programs may have. 2

Similarity is based on the extent to which the intellectual work
in one program can be used in a subsequent program. The line
drawn between protected and unprotected elements is
ultimately a determination of the desired level of competition
within the software industry 43 Articulating this line has
proven elusive.

PLI/PAT 439, 445 (1997).
39 See generally Honorable Jon 0. Newman, New Lyrics for an Old

Melody: The Idea/Expresswn Dichotomy in the Computer Age, 17 CARDOZO ARTS &
ENT. L.J. 691 (1999).

40 For an rn-depth analysis of the problems associated with distinguishing
literal and nonliteral elements of computer programs, see Bruce G. Joseph, Copyright
Protection of Computer Software and Complications, 602 PLIIPAT 209 (2000) (providing
a thorough review of how courts have sought to draw the line).

41 Some examples of nonliteral elements include data structures, file
structures, sequences for communicating between programs, programs that govern
other program modules, and expressive elements of a program's user interface, which
in turn includes menus, screen displays, and icons, to name a few. See Fisher & Reyes,
supra note 38, at 447.

42 See infra note 64 and accompanying text.
43 A line drawn heavily toward either end of the spectrum would harm

the industry by creating too great an effect on the level of competition. Conversely, a
line drawn carefully closer to the protectionist or non-protectionist end of the spectrum
would scarcely diminish or enhance competition, respectively. If, for example, the line
were drawn increasingly closer to the non-protectionist end, this would signal to the
industry that a high level of competition is desired. But see discussion infra Part III.C.
(explaining how more protection effectively leads to increased competition by
encouraging programmers to create new works in the first instance).

[Vol. 67: 2

THE REVERSE ENGINEERING WAR

2. The European Commumty's Software Directive

In the late 1980s, the European Commumty
Commission began a project to provide legal protection for
computer software in the member states of the European
Umon ("EU').44 The project resulted in the issuance of the
Software Directive in May 1991.4 5 Article 1 of the Directive
provides that "[m]ember [s]tates shall protect computer
programs, by copyright, as literary works within the meaning
of the Berne Convention for the Protection of Liaterary and
Artistic Works."46 During its consideration of the Software
Directive, the Commission grappled with the contentious
issues of reverse engineering and interoperability 47 Despite
the intense lobbying that surrounded the Commission's
dealings, the Software Directive reflected a compromise. 8

In addressing the issues of reverse engineering and
interoperability, the Software Directive contains a specific
provision. Article 6 permits decompilation,49 through
reproduction and translation, as a last resort to achieving
interoperability, subject to three conditions: (i) that "these acts
are performed by the licensee or by another person having a
right to use a copy of the program, or on their behalf by a
person authorized to do so";5° (ii) that "the information

44 Now called the European Umon, it was known as the European Community
when Software Directive was issued. It will be referred to as the European Union
CEU") throughout this Note, except when referenced in cited material.

45 See generally Council Directive 91/250/EEC of 14 May 1991 on the
legal protection of computer programs, 1991 O.J. (L 122) 42 [hereinafter Software
Directive].

46 Id. at art. 1.
47 For an explanation and example of interoperability, see supra note 11 and

accompanying text.
48 See Vanessa Marsland, Copyright Protection and Reverse Engineering

of Software-An ECIUK Perspective, 19 U. DAYTON L. REV. 1021, 1031 (1994)
(discussing the industry and lobby pressures and the resulting compromise); Bayha,
supra note 2, at 188. In particular, Bayha points out that "[iln general, the U.S.
interests tended to favor strong intellectual property protection for computer software,
including a prohibition on decompilation." Id.

49 There is no such process as "decompilation." The frequently used term
resulted from its use throughout the Software Directive, which was originally drafted
in French, since there is no other French term for the disassembly process. See Davis,
supra note 12, at 149.

•0 Software Directive, supra note 45, at art. 6.

2001]

BROOKLYN LAWREVIEW

necessary to achieve interoperability has not previously been
readily available";51 and (iii) that "these acts are confined to the
parts of the original program which are necessary to achieve
interoperability" 52 Furthermore, Article 5 allows a lawful
acquirer to reproduce and translate the software for use or
error correction without requiring authorization by the
rightholder.5 3 The Software Directive even contains a provision
expressly permitting black box analysis:

The person having a right to use a copy of a computer program shall
be entitled, without the authorization of the rightholder, to observe,
study or test the functioning of the program in order to determine
the ideas and principles which underlie any element of the program
if he does so while performing any of the acts of loading, displaying,
running, transmitting or storing the program which he is entitled to
do. 54

The Software Directive addresses reverse engineering
rights and limitations more explicitly than does current
copyright law in the Umted States. Some argue that the rights
granted to members of the EU are more restrictive of reverse
engineering than rights granted by present U.S. case law 55
However, the catalyst of this argument is the underlying
statutory ambiguity 56 Although numerous questions remain
regarding the scope of reverse engineering, the Software
Directive has at least taken a step that Congress has not yet
taken; it attempted to statutorily define and limit certain
aspects of reverse engineering in response to the concerns of
the industry and the public.

51 Id.

52 Id.
53 Id. at art. 5.
54 Id. at art. 5.3.
55 See Bayha, supra note 2, at 189 (citing Thomas Heymann, The

International Effect of the EU Restrictions on Reverse Engineering, 2 THE INT'L
COMPUTER LAW. 15 (July 1994)).

56 See discussion infra Part III.

[Vol. 67- 2

THE REVERSE ENGINEERING WAR

B. Case Law

Three significant appellate court decisions, arising from
litigation over video games, specifically address reverse
engineering in connection with computer software.57 All three
cases originated in the District Court for the Northern District
of California and provide guidance to the courts and the
industry on the subject of reverse engineering and the
applicability of copyright protection. On both sides of the
controversy are also several significant district court decisions
that present arguments often relied upon by proponents and
opponents of reverse engineering. 58 Additionally, two other
unrelated cases have proved instructive as to the general
relationship between technology and copyright law 59

1. Technology and Copyright Law

The Supreme Court's decision in Feist Publications, Inc.
v. Rural Telephone Service Co., Inc.60 is easily the most
significant case on compilation copyrights and has implications
that directly affect copyright protection of technology In a
unanimous decision, the Court held that "white pages"
telephone listings are not protected by copyright.6 1 In making
this determination, the Court recogmzed two well-established
propositions-facts are not copyrightable, but compilations of
facts generally are.62 Since originality is a constitutional

57 See infra notes 93-95 and accompanying text.

r1 See Part II.B.2.

59 See, e.g., Feist Pubrns, Inc. v. Rural Tel. Serv. Co., Inc., 499 U.S. 340 (1991);
Computer Assoc. Inel, Inc. v. Altai, Inc., 982 F.2d 693 (2d Cir. 1992).

60 499 U.S. 340 (1991), revg 916 F.2d 718 (10th Cir. 1990).
61 In Feist, the plaintiff Rural Telephone Service Co., was a local telephone

company that published a white pages directory pursuant to state law. The defendant,
Feist, wanted to create a competing area-wide directory. After plaintiff refused to
license its listings to Feist, Feist nonetheless copied plaintiffs directory and compiled
its own directory based on reorgamzations of and necessary changes to plaintiffs
listings. Id.

62 Id. at 344. Feist provided the principle that not all copyrighted works are
accorded the same level of protection. Some portions of a copyrighted work may fall
entirely outside the scope of copyright protection if they are facts, ideas, functional
elements, or unavailable without infringing the original work. See also supra text
accompanying note 36.

2001]

BROOKLYN LAWREVIEW

requirement for copyright protection, 63 and facts are never
original,64 the required originality of a compilation can only be
claimed in the way the facts are presented. Thus, in order "to
merit protection, the facts must be selected, coordinated, or
arranged 'in such a way' as to render the work as a whole
original."

65

The implications of the Feist decision affect technology
in its applicability to computer databases. A computer
database is valued for its selection, inclusion and arrangement
of otherwise overwhelming amounts of data. Similar to
directories of the type at issue in Feist, databases are simply
compilations of preexisting material not itself subject to
copyright protection.66 The main problem facing computer
databases is, likewise, whether the selection is creatively
original. Furthermore, computer databases generally arrange
the data so as to optimize search and retrieval functions. Such
an arrangement faces the problem of being viewed as entirely
typical and devoid of even the slightest trace of creativity, as
was the alphabetical listing of data in Feist.67

Along with Feist came Computer Ass'n. Int'l, Inc. v.
Altai, Inc.,68 in which the Second Circuit devised a three-part
test to determine the occurrence of software infringement. The
results of applying the abstraction-filtration-comparison test
would determine whether substantial similarity of protectable
portions of software programs exists to warrant a finding of

63 Id. at 346.
64 Id. at 358.
65 Fezst, 499 U.S. at 358.
66 See id. at 361.
67 See id. at 362.
68 982 F.2d 693 (2d Cir. 1992), affg 775 F Supp. 544 (E.D.N.Y. 1991). The

plaintiff, Computer Associates, developed a core program that could be modified to
communicate with different operating systems. Defendant and competitor, Altai,
desired to develop a similar program and hired a programmer who had previously been
employed by plaintiff. Unknown to Altai, the hired programmer had taken and used
copies of plaintiff's source code to write the similar program for Altai. Upon discovery,
Altai set up a team of programmers, not including the previous Computer Associates
programmer, to write a replacement program that did not infringe the plaintiffs
program. Although the replacement was completed, and subsequently distributed, by
the team who had no access to either the purloined source code or the infringing code,
plaintiff contended that even the replacement was similar and infringed upon its
copyright.

[Vol. 67- 2

THE REVERSE ENGINEERING WAR

copyright infringement.69 In addition to application of this test,
the court agreed to use a technical expert who emphasized the
distinction and the necessity to look to the similarities in the
code as opposed to what it was the program did.70 In accepting
the expert advice, the court concluded that there was no
substantial similarity between the original and alleged
infringing code.71 In addition to the importance of establishing
and encouraging the three-part test, the court also showed that
it is possible to correct an infringement by rewriting code
without reference to the original infringing work, thus
eliminating an ongoing infringement.72

The Feist and Altai decisions were significant mainly
because the courts recognized that functional elements of
computer programs are not considered creative expression
protectable by copyright law While not a computer software
case, the principles underlying the Supreme Court's decision in
Feist apply equally to many elements of computer software
design and content. In the arena of software, routine
programming practices and obvious methods of programming
are not protected. The Altai decision specifically acknowledges
that such practices and methods are outside the scope of
copyright protection. Feist, together with Altar, has a
significant impact on the realm of computer software.

2. Reverse Engineering and Computer Software

a. District Courts

In the early stages of the reverse engineering war, some
district courts were reluctant to sanction the processes of
reverse engineering. For example, in Hubco Data Products

69 See Weiner, supra note 10, at 16 (providing a concise overview of the Altai
three-part software infringement test).70 See Altar, 982 F.2d at 712-13.

71 See td.
72 In other words, although Computer Associates conceded that the original

version of its analogous program was infringing, over thirty percent having been copied
from Altai's source code, it was able to rewrite the code independent of the infringing
code and avoid a finding of copyright mfrmgement.

20011

BROOKLYN LAWREVIEW

Corp. v. Management Assistance, Inc.,73 the court held reverse
engineering of computer programs to be illegal under copyright
law In Hubco, the copyright owner, MAI, had developed
several versions of its operating system, each more costly,
which were sold at different prices and with different
capabiites.7 4 The defendant and alleged infringer, Hubco, had
been an MAI dealer who discovered that a routine existed
within each different operating system that controlled the
speed of the system.7 5 Hubco then tried to market its own
program that would remove the slow down routine in the
operating systems with lower capabilities, thus increasing the
speed of the system without the need to purchase the more
expensive versions of the system.7 6 To determine the speed
control routines within MAI's operating systems, Hubco ran
comparison tests that inevitably involved reverse
engmeerng.77 The Hubco trial court enjoined this activity on
the ground that the Hubco software was an unauthorized
derivative.

7 8

Similarly, the district court in SAS Institute, Inc. v.
S&H Computer Systems, Inc. determined that reverse
engineering violated copyright law 79 In SAS, the defendant,
S&H, attempted to fraudulently obtain a source code license to
the SAS mainframe program in order to create its own version
that would run on an IBM mainframe, as opposed to the DEC
VAX platform on which the SAS program was designed to
run.80 The court found that S&H had obtained a license under
false pretenses. Although the S&H programmers attempted to
disguise and edit out as much of the SAS code as possible, more
than forty-four portions of the code were exact copies of that
originally written by SAS.8l Both the Hubco and SAS decisions
exemplify courts' imtial reactions to the practice of reverse

73 219 U.S.P.Q. 450 (D. Idaho 1983).
74 See id. at 452.
75 See zd.
76 See rd.
77 See id.
78 See Hubco, 219 U.S.P.Q. at 456.
79 605 F Supp. 816, 830 (M.D. Tenn. 1985).
80 See id. at 820.
81 See td. at 830.

[Vol. 67" 2

THE REVERSE ENGINEERING WAR

engineering; in the beginning, courts were averse to allowing
the practice under copyright law

Despite the seeming reluctance of some courts to
embrace the practice of reverse engineering, other courts, while
not explicitly sanctioning it, recogmzed the possibility that
reverse engineering might not always be unauthorized. For
example, in E.F Johnson Co. v. Unzden Corp. of America,82 the
district court found that defendant, Umden, had infringed
plaintiffs, EFJ's, copyrighted computer software. EFJ had
developed a logic trunked radio system ("LTR") primarily for
use in motor vehicles. 8 The software allows the LTR system to
make "all assigned radio channels accessible to all system
users."8 4 Thereafter, Umden reverse engineered the LTR code
so as to create its own version of code compatible with the
radios in EFJ's LTR system.85 Despite Umden's effort to create
independent code, the court found substantial sinilarity
between Umden's code and EFJ's copyrighted code. However,
although the court held defendant liable for infringement, it
approved of reverse engineering in dicta.86 In its recogmtion of
reverse engineering as an important practice in the industry,8 7

the E.F Johnson decision was at the forefront of the
legitimization of disassembly of computer programs.

Jumping on the reverse engineering bandwagon, NEC
Corp. v. Intel Corp. continued the trend of acceptance.88 In
NEC, a software engineer at NEC reverse engineered Inters
8086 and 8088 microprocessor microcode in an attempt to
develop a new microcode for use in NEC's comparable
microprocessor. 89 Through a process of disassembling and
studying Inte's microcode, the engineer created a final version
for NEC's V20 and V30 microprocessors. Intel claimed that

82 623 F Supp. 1485 (D. Minn. 1985).
8 3 See id. at 1487.
84 See id.
85 See td. at 1490.
86 See id. at 1501-02 n.17 CThe mere fact that defendanes engineers

dumped, flow charted, and analyzed plaintiffs code does not, in and of itself, establish
pirating. While defendant may have permissibly dumped, flow charted, and
analyzed plaintiffs code, it could not permissibly copy it.").

87 Id. (recogmzing that "dumping and analyzing competitors' code is a
standard practice m the industry").

88 10 U.S.P.Q.2d 1177 (N.D. Cal. 1989).
89 See id.

20011

BROOKLYN LAWREVIEW

both programs made use of similar "patches" in their respective
microprocessors. 90 Notwithstanding similarities in the
programs, the court determined that NEC's code did not
infringe on Intels microcode, stating that "when considered as
a whole, [NEC's code] is not substantially similar to the Intel
microcode within the meaning of the copyright law "91
Furthermore, the court reasoned that any similarities were
simply the product of both programs being subject to the same
constraints.9 2 The E.F Johnson and NEC decisions support the
trend towards encouraging reverse engineering of copyrighted
computer programs. Following these two cases, the courts'
implicit approval of disassembly and intermediate copying,
within the bounds of the substantial similarity rule, became
increasingly apparent.

b. Circuit Courts

The next battle in the reverse engineering war
occurred in the more recent cases of Atan Games Corp. v.
Nintendo of America, Inc.,93 Sega Enterprises Ltd. v. Accolade,
Inc.,94 and Sony Computer Entertainment Inc. v. Connectx
Corp.,95 all applying Ninth Circuit law In each of these cases,
the appellate courts analyzed the facts under the fair use
doctrine to determine whether the reverse engineering
methods employed constituted fair use.9 6

90 A patch is used in creating an interrupt sequence in computer code

to overcome a detected "bug" in the code. Presumably, Intel was trying to argue that
use of such a specialized portion of code evinces that NEC must have copied a
significant portion of the overall code if NEC felt it needed that patch to overcome the

same bug that Intel had found. See id. at 1185. Intel's argument may be analogous to
the practice of planting "seeds" consisting of erroneous or inaccurate information in a
writing to trap an infringer. See 1 PETER D. ROSENBERG, PAT. L. FUNDAMENTALS §
5.01[1], 5-9 (2d ed. 2000).

91 NEC, 10 U.S.P.Q.2d at 1185.
92 See id. at 1188.
93 975 F.2d 832 (Fed. Cir. 1992).
94 977 F.2d 1510 (9th Cir. 1992).
95 203 F.3d 596 (9th Cir.), cert. denied, 531 U.S. 871 (2000).
96 17 U.S.C. § 107. Section 107 sets forth four factors in determining whether

the use of a work is a fair use: (i) the purpose and character of the use, including
whether such use is of a commercial nature or is for nonprofit educational purposes; (ii)
the nature of the copyrighted work; (iii) the amount and substantiality of the portion
used in relation to the copyrighted work as a whole; and (iv) the effect of the use upon

[Vol. 67: 2

THE REVERSE ENGINEERING WAR

To the extent that the Court of Appeals for the Federal
Circuit held that reverse engineering and intermediate copying
are not an infringement when the purpose is to understand the
ideas and unprotected elements in a computer program, the
Atari case is consistent with the later Sega decision and the
Altai case. The Federal Circuit held that "reverse engineering
object code to discern unprotectable ideas in a computer
program is a fair use. ' 97 In Atari, the defendant, Atari, "peeled"
the ROM that contained Nintendo's copyrighted program and
then disassembled the contents of the ROM in an attempt to
determine the workings of the Nintendo Entertainment System
("NES").98 In order to prevent unlicensed production of games
for the NES, Nintendo developed a highly sophisticated
electronic lock and key system that locks out all non-licensed
video game cartridges not containing the electronic key 99

Despite Atari's reverse engineering attempts, it was unable to
decipher the code and resorted to obtaining an unauthorized
copy of the source code from the U.S. Copyright Office under
false pretenses.100 The court held Atari infringed Nintendo's
copyright protection based on the purloined copy of code.
However, the court was clear in stating that, under Ninth
Circuit law, "[r]everse engineering, untainted by the purloined
copy of the 10NES program and necessary to understand
10NES, is a fair use." 101

The Ninth Circuit recognized the importance of
disassembly in the software industry in both Sega and Sony 102

Like the Federal Circuit in Atan, the Ninth Circuit justified
the practice as fair use when reverse engineering was used in
an attempt to create a comparable, competing product. In Sega,
the court applied the fair use analysis where the defendant,

the potential market for or value of the copyrighted work.
97 Atari, 975 F.2d at 843.
98 See id. at 836.
99 See id.

100 See id.
i0a Id. at 843.
102 For a comparative analysis of the fair use doctrine in the Sega and

Sony decisions, see Ivan Rothman, From Sega to Sony and Beyondk An Alternative
Legal Basis for Software Reverse Engineering, 18 INTELL. PROP. L. NEWSL. 3 (Spring
2000). The dilemma, as set forth by Rothman, is that if intermediate copying is
prohibited, the public is demed access to unprotected functional elements. On the other
hand, if intermediate copying is allowed, copyright owners' basic rights are violated. Id.

20011

BROOKLYNLAWREVIEW

Accolade, reverse engineered Sega's video game cartridges in
an attempt to produce its own video game that would be
compatible with Sega's platform. 1°3 The court accepted
Accolade's fair use defense, holding that "where disassembly is
the only way to gain access to the ideas and functional
elements embodied in a copyrighted computer program and
where there is a legitimate reason for seeking such access,
disassembly is a fair use of the copyrighted work, as a matter
of law "104 The court's ruling was, however, conditioned on two
factors: disassembly must be the only way to gain access to
unprotected ideas and functional elements; and such access
must be sought for a "legitimate reason." Following Sega,
alleged infringers can claim a right to engage in intermediate
copying and disassembly in these certain limited
circumstances.

Similarly, the Ninth Circuit followed this approach in
Sony 105 And likewise, the court concluded that the four fair use
factors favored the defendant and alleged infinger, Connectix.
Notwithstanding any factual dissimilarities, 10 6 the court went
beyond its earlier decision in Sega, effectively eradicating the
Sega rule's "limited circumstances" approach. Despite the
"legitimate reason" applied to Accolade's fair use defense, the
court ruled in Sony that a final product which does not contain
any code of the original product is transformative and, as such,

103 Sega developed a video entertainment system, Genesis III, which employed

a protective system in response to counterfeiters. The system, designed to protect its
trademark rights, was a patented process by which the console's operating system
reads a game program for specific computer code. If a game program contains the
patented initialization code, the Genesis III console would allow the game to be run.
Accolade disassembled Sega's cartridges to obtain this initialization code so that it
could develop and market Genesis-compatible video games. Sega, 977 F.2d at 1520.

1
04 Id. at 1527-28.

i05 Sony, 203 F.3d at 596. In Sony, after having been refused a license,

Connectix reverse engineered the read-only memory chip used in Sony's video
entertainment console to create its own operating system. By employing black box
analysis and disassembly, Connectix was able to copy and use the contents of Sony's
read-only memory chip. As a result, Connectix developed a software product that
emulates both the hardware and software components of the Sony console and enables
users to play Sony games on a computer rather than on a television.

106 For example, unlike the defendant in Sega, Connectix did not develop
video games compatible with Sony's platform, but an alternative platform compatible
with Sony's games. Also, whereas the defendant in Sega exclusively employed
disassembly, Connectix relied primarily on black box reverse engineering.

[Vol. 67: 2

THE REVERSE ENGINEERING WAR

does not supplant the original product nor cause a
substantially adverse impact on the potential market of the
original product. This line of reasoning suggests that
intermediate copying necessary to access and examine
unprotected ideas may be sanctioned only if the final product
does not infringe the original product. Given the Ninth
Circuit's rulings in Sega and, subsequently, in Sony, the
restrictions on intermediate copying of copyrighted computer
programs have practically dwindled to nonexistence. In
reconciling the fair use defense, the Sega ruling, and the
significant departure from both in Sony, it seems clear that a
new approach to analyzing reverse engineering of computer
software is crucial. 10 7

From Hubco to Sony, courts have been faced with the
arduous challenge of balancing the need to protect computer
programs against the need to encourage competition and
promote innovation. With an inadequate statutory framework,
the vast majority of cases are inconsistent and simply
irreconcilable. However, courts have increasingly faced this
challenge with an eye toward legitimizing reverse engineering
of computer software through the ineffectual guise of the
statutory fair use defense.

III. ANALYSIS

A. Ambiguity Sets the Stage for the Final Battle

It is generally agreed, by opponents and proponents
alike, that the present statutory framework is inadequate to
address the effects of reverse engineering on copyrighted
computer software. 08 On the one hand, attorneys are

107 See, e.g., Rothman, supra note 102, at 7 (suggesting the copyright misuse
doctrine as a new approach).

108 See, e.g., Barak D. Jolish, Rescuing Reverse Engineering, 14 SANTA CLARA

COMPUTER & HIGH TECH. L.J. 509, 512-13 (1998) ('Congress should eliminate the
existing state of confusion through legislative action."); Weiner, supra note 10, at 12
("The language of section 117 and the legislative history are both silent on whether

this section was meant to encompass reverse engineering of software."); Behrens &
Levary, supra note 5, at 1 ('Copyright laws that currently govern the development of

20011

BROOKLYN LAWREVIEW

concerned about how to advise clients. On the other hand,
computer programmers are concerned about the repercussions
of various software development methods. Regardless, both are
equally worried about the ambiguities within the current
governing copyright law 109 The text of the current Copyright
Act, together with the interpreting case law, creates a
presumption that disassembly is itself an infringement; 110

however, courts have occasionally overcome this presumption
by stretching the fair use defense to allow reverse
engineering.11'

Whether analyzing the fair use defense or pondering
legislative intent, the law of reverse engineering of computer
software is essentially judge-made. 112 While Congress amended
the Copyright Act to explicitly include computer software, 118 it
failed to explicitly address the issue of reverse engineering as it
applies to computer software. The Copyright Act does allow for
limited copying by a program acquirer so as to promote the
effective intended use of the program, but not to facilitate the
development of a competing product, 114 and certainly does not
grant such permission to commercial competitors. 1 5 Moreover,
a section of the Copyright Act includes the fair use defense,
which limits the exclusivity of the copyright owner's right, but,
it is unclear whether this section was intended to encompass
reverse engineering. 116 Despite this ambiguity, courts have

computer software are still quite ambiguous, with difficulties in their application and
debates over the scope of the law.").

109 See, e.g., Behrens & Lev.ary, supra note 5, at 1. Attorneys are affected by

uncertainty in giving clients advice on whether certain software development
techniques violate copyright laws or carry other legal consequences. Id. Similarly,
computer software manufacturers need more clarity in this area of law in order to have
a better idea of what is and is not allowed when developing new programs. Id. at 17.

110 See Arthur R. Miller, Copyright Protection for Computer Programs,
Databases, and Computer-Generated Works: Is Anything New Since CONTU?, 106
HARV. L. REV. 978, 1016 (1993).

Ill "[Jjudicial creation of even a circumscribed reverse engineering privilege
under the fair use doctrine seems singularly inappropriate." Id. at 1024.

112 See Bayha, supra note 2, at 178.
113 See supra Part II.A.1.
114 Section 117 gives a program acquirer a circumscribed freedom to make a

copy or adaptation for internal use, negatively implying that the statute's permission
does not extend to commercial competitors. Miller, supra note 110, at 1023. See also
supra text accompanying note 32.

115 See supra note 114 and accompanying text.
116 See Weiner, supra note 10, at 12.

[Vol. 67- 2

THE REVERSE ENGINEERING WAR

increasingly employed the fair use doctrine in order to avoid a
finding of copyright infringement." 7

Congress has not, however, evaded the subject of
reverse engineering entirely In providing an allowance for
reverse engineering of semiconductors, Congress took a sui
geners approach to this issue in adopting a specifically tailored
provision of the Semiconductor Chip Protection Act
("SCPA")." 8 The provision protects mfringement, via copying
and similarity, provided that the end product is the result of
study and analysis and embodies technological improvement." 9

Opponents of reverse engineering argue that the
express right to reverse engineer provided for in the specific
provision of the SCPA evinces legislative intent not to allow
such activity with respect to other works, such as computer
programs.120 Proponents respond by simply asserting that this
argument was rejected by the Ninth Circuit in the Sega case.121

Proponents also argue that cases which invoke the fair use
defense stand for the proposition that reverse engineering can
be lawful.122 This argument lacks merit. To begin with,
proponents of reverse engineering recognize the clear lack of
guidance from Congress as well as the courts. 128 Second, they
concede that a strict interpretation of the statutory language
could easily lead to a belief that Congress did not intend to
allow reverse engineering. 24 Third, they admit the strong
possibility that Congress did not intend the provisions of the
Copyright Act to apply to reverse engineering. 125 Based on
these concessions, the proponents' argument for the
legitimization of reverse engineering of computer software is
unsubstantiated. Proponents appear to be engaged in a sort of

117 See supra Part ll.B.
118 17 U.S.C. § 906(a).
119 See Bayha, supra note 2, at 178.
120 The argument is that since Congress took the affirmative step of explicitly

allowing reverse engineering of semi-conductor chips, it could have easily taken the
same step in respect to computer programs. Therefore, since Congress did not provide
an express statutory right to reverse engineer computer programs, no such right is to
be implied. See, e.g., Miller, supra note 110, at 1024.121 See Bayha, supra note 2, at 178.

122 See id. at 185.
12 3 See Id. at 193.
12 4 See Wemer, supra note 10, at 12.
125 See id. at 17.

2001]

BROOKLYN LAWREVIEW

circular reasoning to: (i) assert that the current legislation is
unarguably ambiguous; 126 (ii) recognize that some courts have,
therefore, felt it prudent to wait for a legislative response12 7

while other courts have simply stretched the fair use
defense; 128 and (iii) then support their proposition by relying on
courts invoking and interpreting such a clearly ambiguous
statute. Proponents support their proposition that reverse
engineering can be lawful by relying on a body of case law that
they admit is weak and possibly even analytically flawed. 12 9

With an inactive legislature and courts hesitant to find
infringement in computer software cases, especially in light of
the fair use defense, virtually no aspect of a computer program
is afforded copyright protection under the current copyright
regime. Therefore, programmers are effectively free to
disassemble an entire copyrighted program. This "license" to
freely reverse engineer is equivalent to giving someone access
to the entire copy of a program's source code. 130 Despite the
lack of comments and labels, it is nevertheless quite simple to
tweak variables and modify the "visual" aspects of the code to
mask the "similar expression" yet still "copy" the idea of the
program. 13 Given the unarguable fact that current copyright

126 See "Jolish, supra note 108.
127 See Bayha, supra note 2, at 194.
128 It has been argued that in both the Atari and Sega cases the courts

deviated from Congress' intent and design by creating a "wide-angle [disassembly]
privilege" despite the telephoto character of the fair use doctrine. See Miller, supra
note 110, at 1015. In both of these landmark cases, the courts accorded weaker
copyright protection to computer programs than to other works, explicitly contradicting
CONTU's findings and Congress' intention. Id. at 1022.

129 See Davis, supra note 12, at 160 (stating "courts, lawyers and their clients
should be wary of some of the existing case law, which seems wrong").

130 The argument is simply that an unlimited freedom to disassemble is
tantamount to handing over a complete copy of the program's source code. Since it is
possible, and quite easy, to simply change variable names and the aesthetic structure
of the code itself, programmers are able to successfully copy the protected expression
by means of such trivial changes. Provided the new code produces a final product that
appears facially dissimilar from the original program, these changes can mask the
actual copying of the expression.

131 While it is relatively simple to circumvent allegations of copyright
infringement of computer software, some computer programmers are aware, and
cautious, of the risks posed by engaging in reverse engineering. See, e.g.,
http://www.darbylaw.com/reveng.html (last visited Nov. 6, 2001) (providing procedures
to be utilized for reverse engineering of computer code). Intellectual property firms,
such as Darby & Darby, are clearly concerned that any reverse engineering comply
with strict procedures designed to avoid any possible infringement of copyrighted code.

[Vol. 67- 2

THE REVERSE ENGINEERING WAR

law is entirely ambiguous and thus provides little, if any,
guidance for courts, it is now simply a matter of determining
who will prove victorious in the reverse engineering war based
on competing premises.

B. Innovatin and Compettion Boasting the Battlefront

The vast majority of legal scholars seem to support the
current trend in case law, believing that innovation and
competition far outweigh the need to protect computer
programs. In arguing their position, proponents of reverse
engineering favor public interests over private protection.
Their "innovation argument" asserts that the public receives a
major benefit when inventors and businesses are encouraged to
devise similar products through reverse engineering because it
encourages the original inventor to keep ahead of the
competition by continuing to improve the original product.132

The proponents' "competition" argument claims that
reverse engineering encourages healthy competition and price
pressures in the market. 133 This view clearly parallels the
tendency of courts to favor competition over monopoly 134 The
general fear is that prohibiting reverse engineering would give
a copyright owner an effective monopoly over all software that
would presumably interoperate with the copyrighted work,
which monopoly may even extend to corollary markets. 135

Proponents and courts believe that a prohibition on reverse
engineering would ultimately "stifle the proliferation of ideas,
bounty of products, and hearty competition."136 Furthermore,
at least one proponent argues that the trivial amount of

132 See, e.g., Behrens & Levary, supra note 5, at 17; Davis, supra note 12, at

147.
133 See authority cited supra note 126.
134 See Behrens & Levary, supra note 5, at 11.
135 See Bayha, supra note 2, at 193. A copyright on certain software, in a body

of law that prohibits reverse engineering, would grant the owner a monopoly over all
interoperable software, as well as a monopoly that may even extend to the market for
computer hardware. Id.

136 Jolish, supra note 108, at 512.

2001]

BROOKLYN LAWREVIEW

reverse engineering done for competitive purposes is most
likely done to obtain "obscure little details" as opposed to more
general externalities. 137

Proponents of reverse engineering further sustain their
position by proclaiming the relevant needs for reverse
engineering within the software industry In accordance with
the deemed importance of providing a public benefit,
proponents argue that access to ideas is necessary Ideas are
not copyrightable subject matter, and reverse engineering
provides access to these unprotected ideas.18 8 Another need in
the software industry for reverse engineering is software
compatibility, which is prevented under a strict interpretation
of current copyright law 139 Perhaps most importantly,
proponents argue that with the rapid evolution of technology,
there is a disparate progress in the areas of computer
hardware and software. 14° Proponents believe that the
disparity between advancements in these convergent
industries could be reduced through the use of reverse
engineering.

141

In addition to the needs within society and within the
industry, public policy will inevitably have a significant impact
on the outcome of the reverse engineering war. Laws that are
interpreted to prevent the public from using ideas and
information in the public domain violates public policy, which
demands that information and ideas are kept available for all
to use.142 In this sense, proponents argue that a prohibition on
reverse engineering would violate public policy by affording a
copyrighted computer program monopolistic-like protection. 143

13 7 Johnson-Laird, supra note 7, at 352.
138 See Weiner, supra note 10, at 6.
139 See zd.
140 See id. at 7.
141 See, e.g., Weiner, supra note 10, at 6. Werner uses the Intel

Pentium Pro CPU as an illustration of this point, arguing that while the CPU is
optimized for 32-bit applications, very little 32-bit application software is on the
market. By allowing software manufacturers to reverse engineer the limited 32-bit
application software available, for the purpose of achieving interoperability and
compatibility, the utility of the hardware advancement made by the Intel CPU would
increase.

142 See Justice O'Connor's discussion of conflicting patent and copyright
protections in the landmark case of Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489
U.S. 141 (1989).

143 See Davis, supra note 12, at 155. Despite this seemingly sound argument,

[Vol. 67: 2

THE REVERSE ENGINEERING WAR

C. Protectin Still Able to Power Ahead

Despite the strength of the proponents' arguments for
favoring innovation and competition over protection, it is not
clear that a statutory exception for disassembly would in fact
benefit society 144 Proponents, as well as courts, espouse the
objective of copyright law as one to promote competition and
innovation in the marketplace. 145 However, the Copyright Act
does not suggest that every aspect of a work be made available
to the public in order to qualify for copyright protection. 146 As a
matter of fact, the disassembly exception that proponents
advocate would deny owners the exclusive rights they are
statutorily entitled to: the right to authorize, or refuse to
authorize the reproduction, adaptation, and translation of their
copyrighted works. 147 Pernuttuig the copyright owner to control
the intermediate copying incident to reverse engineering
increases protection against infringing final products, 48 in
addition to making disclosure of "functional" source code self-
regulating.149 More importantly, allowing disassembly actually

reliance on the CONTU report does not provide strong support. The report states
simply that programmers are free to "read" copyrighted programs; this freedom is not
challenged by opponents. See also supra note 32 and accompanying text.

144 "Tjhere is little evidence that more convement access to the ideas
embedded in computer code would be of greater benefit to society than leaving the
copyright incentives unmpaired by a [disassembly] exception." Miller, supra note 110,
at 1029.

145 The power granted to Congress by the Constitution, and the stated
objective of copyright law, is "to promote the Progress of Science and useful Arts," by
allowing society to benefit from the availability of creative works. U.S. CONST. art. I, §
8, cL 8.

146 Copyright is intended to benefit society from the availability of creative
works regardless of whether literal expressions or underlying ideas of those protected
works are directly available to the public. Miller, supra note 110, at 1029. However, the
ideas underlying computer programs are usually accessible by simply studying their
operation and documentation, although accessing these ideas may require some effort
and the cumbersome task of reading machine code directly. See id.

147 See id. at 1027.
148 See id. at 1022.
149 If source code for an unprotected process or function is obtainable by any

other legal means, such options should be explored before resorting to reverse
engineering. See Behrens & Levary, supra note 5, at 15; supra Part II.A.1. (discussing
copyright protection for literal versus nonliteral, or functional, elements of computer
programs). The idea here is that if copyright owners are given the chance to make
certain code accessible freely or upon request, copyright owners retain more control
over their statutory right and disclosure is more self-regulating. If the copyright owner

20011

BROOKLYN LAWREVIEW

stifles innovation. By granting freedom to wholly disassemble
another's copyrighted software, computer programmers will no
longer have any incentive to produce an innovative or creative
expression in the first place. 150 An effective "license" to
disassemble penalizes the creative effort of the original
programmer by freezing or substantially impeding human
innovation and technological growth, 151 in addition to
amplifying the threat of software piracy 152

Allowing protection of copyrighted computer programs
encourages innovation, and results in greater protection for the
software industry as a whole. Additionally, such protection is
also imperative to realizing the potential within the software
industry At least one oft-quoted scholar has argued that
permitting disassembly allows a second programmer to "create
a market substitute and reap the benefits of a successful
program after others have incurred the risk and expense of its
development."' 153 When the goal of engaging in disassembly is
to replace the original program on the market, benefit would
inure only to a small number of companies that have "staked
their future on copying their competitor's product," while
substantially harming the overwhelming majority of the
market.154 Furthermore, "traces of copying can [easily] be
disguised." 155 Since the copyright owner faces the undue
burden of discerning and proving infringement, programmers

believes the relevant portion of code is protected expression and refuses to disclose it,
exercising the right to refuse authorization acts as a warmng to subsequent
programmers that any attempt to reverse engineer may be an infringement.

150 See Miller, supra note 110, at 1027.
151 See id. at 1034.
152 The primary detriment of allowing reverse engineering in the software

industry is the fear of piracy, as well as the potential decrease in initial innovation. See
Weiner, supra note 10, at 9.

153 Miller, supra note 110, at 1026. Some purport that it is far too simple to
make slight modifications to an original program through reverse engineering and
then market the amended version as a new software product; others argue that reverse
engineering is extremely difficult, time consuming, and demanding of the skill and
experience of a programmer. Compare Behrens & Levary, supra note 5, at 5, with
Johnson-Laird, supra note 7, at 346.

154 Johnson-Laird, supra note 7, at 351.
155 See Miller, supra note 110, at 1027.

[Vol. 67- 2

THE REVERSE ENGINEERING WAR

who disassemble are encouraged to engage in hunting
expeditions through copyrighted programs and to limit the
amount of code they copy for use in their final products. 156

The argument against reverse engineering is further
bolstered by the indispensable perspective of those skilled in
the field-computer programmers. Reverse engineering entails
a great expenditure of tune, skill, expertise, and money Given
the time, effort, and expense required to reverse engineer an
entire program, it would be much easier and more economical
to develop entirely new software from scratch. 157 One computer
programmer, in particular, states that reverse engineering is a
fundamental part of normal software development and argues
that programmers would much rather be challenged to design
their own code because that is precisely the kind of intellectual
creativity they enjoy 158 If reverse engineering is so overly
demanding of programmers who would rather design their own
code anyway, then to engage in reverse engineering of
copyrighted code might be seen as a futile effort; it is neither
quicker nor less expensive, and inevitably risks infringing on
copyrighted software.

Finally, public policy plays a significant role in

substantiating the opponents' position. While courts have
tended to favor the views of proponents while the legislature
has remained silent, in general, American interests tend to
favor strong intellectual property protection for computer
software, including a prohibition on disassembly 159 In the
debate over the propriety of reverse engineering, commentators
and policymakers have taken some strong stances.160 The
Umted States Trade Representative ("USTR") has taken the
position that as a matter of U.S. international policy, reverse

156 See id. at 1018 (discussing the Sega case and the coures focus on the final
product). It should be noted that although the author shares much of Miller's reasoning
and logic, the conclusions that each arrive at are different. Both agree that there
should not be a disassembly exception, but since there is not an explicit one, Miller
does not feel the need for legislative action since courts are thus free to interpret the
Copyright Act. The author does not support Miller's conclusion, in part, because Miller
concludes by stating that most judicial decisions seem correct, yet concedes throughout
that the Sega and Atari courts got it wrong.157 See Johnson-Laird, supra note 7, at 348; Davis, supra note 12, at 151.

15s See Johnson-Laird, supra note 7, at 352.
159 See Bayha, supra note 2, at 188.
160 See zd. at 178.

2001]

BROOKLYN LAWREVIEW

engineering is anticompetitive and unlawful under current
domestic law 161 In response to concerns over the development
and final resolution of the Software Directive in the late
1980s,162 the United States has further articulated its position.
The United States expressed concern over the possibility of
amending the Japanese Copyright Act to expressly allow
disassembly and reverse engineering of computer software. 168

An advisory council to the Cultural Affairs Agency, including
members from the government, academia, and industry, was
appointed to review the Japanese Copyright Act.164
Immediately, the council's activities incited much alarm and
trepidation within the industry This overwhelming response
from U.S. business interests resulted in a formal request from
the Secretary of Commerce and the USTR that "no action be
taken without dialogue with interested U.S. parties."165 Less
than a year later the council's report was released, making no
recommendation on the reverse engineering proposal, instead
labeling such a proposal "premature."166 In response to the
council's report, the Japanese government immediately
dropped its pursuit of the reverse engineering issue.167

D So Who Wins The War?

With innovation and competition battling the need for
protection, the question remains who wins the war. First,
Congress must act since courts are devoid of any meaningful
guidance. 168 Second, proponents of reverse engineering argue
that society and the software industry would be better served
by providing a disassembly exception to copyright protection

161 See id. at 179.
162 The USTR, in taking its position that disassembly is illegal m the United

States, had argued that it should, likewise, not be allowed under the laws of the
European Union. See id. at 188; supra Part II.A.2.

163 See Bayha, supra note 2, at 190.
164 See id.
165 Id.
166 Id. In the year between the appointment of the council and the rendering

of its report, the Japanese proposal caused continued strife in trade negotiations
between the United States and Japan. See id.

167 See Bayha, supra note 2, at 190.
168 See supra Part III.A.

[Vol. 67: 2

THE REVERSE ENGINEERING WAR

that will promote innovation and competition in the
marketplace. 169 Third, opponents of reverse engineering
advocate that granting the freedom to disassemble, as
proponents suggest, would actually defeat the incentive that
disassembly is purported to provide.1 70 To promote the progress
of science and the useful arts, the basic premise of copyright
law, 171 programmers must be confident that their intial
innovation will receive some protection. An unrestricted
freedom to disassemble is too broad. Therefore, the necessary
logical conclusion is for the legislature to place explicit limits
on the right to reverse engineer copyrighted computer
programs. The need to further protect the intellectual property
of the computer software industry demands that the legislature
more clearly define and delineate the role that reverse
engineering plays in the realm of copyright law

IV PROPOSAL

A. News Flash-Reverse Eng-neenng War Ends in Peace!

1. Terms of the Proposal

This Note proposes an end to the reverse engineering
war-to amend current copyright law to explicitly address the
reverse engineering issue as it applies to computer software.
The Copyright Act should be amended to: (i) expressly allow
black box analysis, and (ii) limit disassembly solely to the
confines of the clean room process. This limited right to
disassemble a copyrighted computer program is permitted only
where access to critical yet unprotected ideas and elements is
not available by any other legal means. In addition to
permitting disassembly only as a means of last resort, the final
product must nevertheless satisfy the "substantial similarity

169 See supra Part Il.B.
170 See supra Part fli.C.
171See supra note 145 and accompanying text.

2001]

BROOKLYN LAWREVIEW

test" as expressed by both the E.F Johnson v. Uniden 72 and
NEC Corp. v. Intel Corp.173 courts. Such an amendment might
read:

§ 117A. Limitations on exclusive rights: Reverse engineering of
computer programs

Notwithstanding the provisions of section 106, it is not an
infringement for the owner of a copy of a computer program to
engage in reverse engineering as a means to make a software
program compatible with pre-existing software to the extent that:

(a) the owner may, without the authorization of the
rightholder, observe, study, or test the functioning of the program in
order to determine the unprotected ideas and functions that underlie
any element of the program if done while performing any of the
lawful acts of loading, displaying, running, transmitting or storing
the program, which process is referred to as "black box analysis;" or

(b) the owner may, without the authorization of the
rightholder, gain access to necessary portions of the program
through the process of translating object code to source code,
provided:

(1) such access is unavailable from other sources such as
program manuals, flow charts, interface specifications or other
technical documentations;

(2) such portions of disassembled code are limited to those
that contain unprotected ideas and functions; and

(3) that the act of disassembling occurs strictly under
"clean" conditions where:

(i) the first programmer, or team, develops a set of high
level specifications or criteria necessary to create the final product,
achieved by engaging in any lawful activities, including black box
analysis;

(ii) the resulting set of specifications or criteria is free from
any of the protected expression of the original program;

(iii) such set of specifications or criteria is then received by a
second programmer or team that has never seen or been exposed to
the original program, and programs new code based exclusively on
such set of specifications or criteria; and

(iv) the first and second programmer are not permitted to
commumcate directly at any tune during the development of the
program.

172 623 F Supp. 1485 (D. Minn. 1985).
173 10 U.S.P.Q.2d 1177 (N.D. Cal. 1989).

[Vol. 67- 2

THE REVERSE ENGINEERING WAR

These provisions would serve as an affirmative defense;
the burden of proof would be on the alleged infringer to rebut
the copyright owner's prima facie case of infringement. If the
defendant asserts an affirmative defense based on the use of
black box analysis, any similarities could be attributed to
specific compatibility and hardware constraints. For an
affirmative defense based on the clean room process, "paper
trail" evidence could be used to prove the legitimacy of the
reverse engineered product. 7 4 Since programmers would be
allowed to engage only in black box analysis or disassembly via
the clean room process under the new statutory framework, the
potential for infringing software is greatly dimnished.

Presuming that programmers will not engage in illegal
methods of reverse engineering once their rights are
delineated, the legislature would be able to seal the
proposal/amendment. Each side gains and loses a little of its
previous freedoms, however, industry and society will equally
benefit. 7 5 The most significant trade-off occurs within the
industry While programmers who may at some point be
copyright owners will no longer be discouraged from creating
more sophisticated software since they are afforded somewhat
more protection, those same programmers who may become
second programmers at some other point in the future are still
allowed enough access to original programs to encourage
innovation. By providing equilibrium within the industry,
proponents and opponents are both able to attain their goals.
Providing protection allows innovation and competition to
thrive in an industry where private protection essentially
transpires into a public benefit.

174 The clean room process still poses the threat of potential infringement,

given that disassembly will generally be involved, since the process would require the
making of intermediate copies. However, the technique may be effective if disassembly
is permitted on other grounds, such as within the confines of the proposed amendment.
If the initial disassembly is not legal though, use of the clean room process alone will
not legalize the final product. See Miller, supra note 110, at 1025.

175 However, given that these freedoms emanated from statutory ambiguity,
they were never definitive rights.

20011

BROOKLYNLAWREVIEW

2. Closer to the EU Software Directive9

The overwhelming concern expressed by the Umted
States, in light of the Software Directive and the proposed
amendments to the Japanese Copyright Act, strongly suggests
that any amendment to current copyright law reflect those
concerns. 176 The amendment proposed in this Note balances
the views and fears posed by both sides. By expressly
permitting reverse engineering in the form of black box
analysis, and strictly limiting acts of disassembly to the
confines of the clean room process, both as a means to achieve
interoperability with pre-emsting software, the proposal
addresses reverse engineering of computer software in a way
that provides protection yet encourages innovation and
competition.

Black box analysis occurs through a process where the
computer programmer never looks at the source or object code
of the program. Since any similarities in code will not be the
result of copying from the original code, this form of reverse
engineering has generally been deemed permissible by both
opponents and proponents alike. 177 Similarly, the clean room
process will produce code that is not "substantially similar" to
the original copyrighted code, given that the programmers who
developed the new code never had access to the original code.178

The benefit of allowing disassembly only as a function of the
clean room process is that since there is no substantial
similarity, the new code presumably will not be an infringing
work because access and substantial similarity could not be
established as required for proof of copyright
infringement. 17 9

176 See supra Part IlI.C.
177 See Bayha, supra note 2, at 179 ('[black box analysis] generally has been

deemed permissible by both protectionist and non-protectionist schools alike."); Davis,
supra note 12, at 146 CThere should be no serious question that [black box analysis] is
legal, as it has been for more than a hundred years, and it does not involve any copying
of the source or object code of the original device.").

178 See Bayha, supra note 2, at 181. In the absence of verbatim copying, as
would be absent in the clean room process, a copyright owner may show mfrgement
only by showing that the alleged infringer had access to the original work and that the
two works are substantially similar. Atan, 24 U.S.P.Q.2d at 1024.

179 See Bayha, supra note 2, at 181.

[Vol. 67" 2

THE REVERSE ENGINEERING WAR

Furthermore, the clean room process appears to have been
expressly approved in both the Computer Assoc. Int'l v. Altai,
Inc.180 and NEC Corp. v. Intel Corp.181 cases.

While black box analysis is unarguably permissible,182

there is concern over the clean room process because it still
involves intermediate copying of the copyrighted code, despite
the lack of access and substantial similarity 183 Like the EU,
which struggled with this very issue in the consideration of its
Software Directive, the U.S. legislature must determine how
best to protect copyrighted computer software while allowing
enough access to achieve interoperability Clearly, if black box
analysis, together with access to any relevant technological
documentation, fails to provide the programmer with sufficient
information, a viable alternative would be to disassemble
necessary portions of the original code. To this extent, the
Software Directive provides a noteworthy model for structuring
amendments to the Copyright Act. However, given the intense
opposition to allowing a blanket exception for disassembly, as
attempted by the Japanese government, the Software
Directive's limitations on disassembly184 would be further
improved by limiting permissible disassembly to the clean
room process. Since a broad freedom to disassemble is so highly
objectionable, the clean room process provides additional
protection from the possibility of infringement. By moving
closer to the EU Software Directive, but providing an
additional safety net for programmers, the proposed
amendment to the Copyright Act strikes the proper balance
between competing concerns.

B. Aftermath of the War- Economic and Societal Benefits of
Proposal

The economic model of intellectual property protection
requires a level of societal protection that will maximize

180 982 F.2d 693 (2d Cir. 1992), affig 775 F. Supp. 544 (E.D.N.Y. 1991).
181 10 U.S.P.Q.2d 1177 (N.D. Cal. 1989).
182 See sources cited supra note 177.
183 See supra note 177; Bayha, supra note 2, at 181.
184 See supra Part II.A.2.

2001]

BROOKLYN LAWREVIEW

societal benefits while minimizing societal costs.185 While a
monopoly is generally less efficient than a market economy,
intellectual property is an unusual commodity, and a
successful economic model can be achieved through a grant of
certain, limited monopoly rights to the creator of intellectual
property 186 By granting computer software monopoly
protection for a limited time through the copyright regime,
programmers are provided a monopoly incentive that
ultimately produces a greater quantity of ideas and original
inventions. In addition to quantitative improvements,
qualitative improvements are attainable through stronger
protection. 187 In vast industries, such as the software industry,
where the research and development costs are high and the
production costs are low, few compames are willing to invest in
the development of revolutionary inventions if competitors can
easily copy them. 188 By amending current copyright law to
provide for greater protection, but not prohibitive
overprotection, society and the software industry will benefit
from a significant improvement to the quantity and quality of
software developments.

The economic impact of allowing a reverse engineering
exception would be devastating to the software industry, given
the immense discrepancy between the cost of creating software
versus the cost of merely duplicating it. Although the cost of
engaging in reverse engineering can be substantial for large
programming projects, 189 original programs are increasingly
expensive to develop. 90 On the one hand, the creation of
original computer software requires large teams of
programmers to commit extensive amounts of time and the
actual software company to expend enormous amounts of
money On the other hand, once fully developed, the
reproduction costs of the software are insignificant in

185 See Lawrence D. Graham & Richard 0. Zerbe, Jr., Economically Efficient

Treatment of Computer Software: Reverse Engineering, Protection, and Disclosure, 22
RUTGERS COMPUTER & TECH. L.J. 61, 71 (1996), for a complete economic analysis of
the effects of reverse engineering on computer software.

186 See td.
187 See id. at 72.
lSS See id.
189 See Davis, supra note 12, at 151.
190 See Graham & Zerbe, supra note 185, at 68.

[Vol. 67. 2

THE REVERSE ENGINEERING WAR

comparison. Therefore, computer software is a highly attractive
target for reverse engineering. If an exception were permitted,
a programmer engaged in disassembly would be able to
reproduce a competitor's entire program and appropriate in a
single procedure what could represent years of creative effort
and investment by the copyright owner. 191 Due to the unfair
economic advantage that reverse engineering provides second
comers, and the threat that this imposes on the software
industry, the economic benefits of this Note's proposal further
support its efficacy 192

CONCLUSION

This Note has analyzed the impact of reverse
engineering of computer programs within the software
industry under current copyright law The analysis has
demonstrated the difficulty that courts have encountered in

walking the statutory fine line between the need for protection
and the need to encourage innovation and competition. In
critiquing the current trend of case law, which stretches an
inadequate statutory framework beyond its intended scope, the
analysis illustrates that an amendment to the Copyright Act is
imperative to provide the courts with any meaningful
guidance. In particular, this Note has proposed an amendment
to expressly legitimize the practice of black box analysis and a
limited right to disassemble by placing these exceptions
squarely within the provisions of the Act. The proposed
amendments are carefully tailored to provide additional
protection to copyrighted computer software without impeding

191 See Miller, supra note 110, at 1026.
192 Notwithstanding the economic incentive to reverse engineer software,

market forces frequently provide protection against products developed through
reverse engineering. See Graham & Zerbe, supra note 185, at 68. Lead time, for
instance, gives the original developer advantages in brand recognition, as well as
brand loyalty if the original program is on the market for a significant amount of time
prior to the release of any similar, subsequent programs. See id. at 69. Moreover, the
shelf life for software products is relatively short and the original developer may have
upgraded its original version before the second developer's product has a chance to hit
the market. See id. However, there is also an economic disincentive to engaging in
reverse engineering; given the likelihood that original software may contain errors,
reverse engineering such software may be more costly than independent development.
See id. at 66.

20011]

BROOKLYN LAWREVIEW

innovation or competition. The amendments also provide
protection to effectively encourage innovation and competition
and permit access to the program's unprotected ideas and
functions. The public and software industry can equally benefit
from the creation of interoperable software through a provision
that explicitly addresses reverse engineering. Through a
straightforward application of the amendments, the future of
reverse engineering of computer software is no longer in flux,
and the legislature can finally put an end to the reverse
engineering war.

Barbara J. Viningt

t Bachelor of Arts in Computer Science (1999), New York University;
candidate for degree of Jurs Doctor, Brooklyn Law School (2002).

[Vol. 67: 2

	Brooklyn Law Review
	12-1-2001

	The Future of Computing Software in the Reverse Engineering War: Excessive Protection v. Innovation
	Barbara J. Vining
	Recommended Citation

	Future of Computer Software in the Reverse Engineering War--Excessive Protection v Innovation, The

