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JUDGMENT FOR JUDGES:  
WHAT TRADITIONAL STATISTICS DON’T 

TELL YOU ABOUT CAUSAL CLAIMS 

Steven N. Goodman, M.D.∗ 

INTRODUCTION 

The determination of the likelihood that a given agent or 
exposure caused an injury to another person is a critical 
foundation of the tort system. When this determination is based 
on evidence derived from statistical analyses of scientific 
studies, it is critical that a judge or jury reviewing these analyses 
or the testimony of experts understand where statistics leave off 
and judgment begins. Too often, the determination of causality 
in the tort setting is left to a formulaic misapplication of what 
are regarded as scientific criteria for proof. This essay will 
review how scientific and legal judgment must augment 
statistical measures in addressing questions of both general and 
specific causation. This article will explore the traditional 
method of statistical inference, based on hypothesis testing and 
P-values, then an alternative based on Bayes Theorem, with the 
Bayes Factor as a measure of evidence. 

I. TRADITIONAL STATISTICAL SIGNIFICANCE APPROACH VS. 
BAYES THEOREM 

First, this article will explore in some depth the meaning of 
a finding of “statistical significance,” which is the cornerstone 
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of virtually all claims of scientific proof. It will show that 
standard statistical indices do not answer the question most 
judges are interested in, for example, how likely an observed 
relationship reflects a true one. It will set aside for the moment 
the question of whether that relationship, once established, is 
causal. If no relationship is found, then the causal question is 
moot. So it is reasonable first to examine the question of 
whether an observed statistical relationship is due to chance, or 
an alternative, non-chance explanation. 

A simple example will serve as the departure point for this 
exploration. Let us imagine that a plaintiff claims that proximity 
to a local power plant is responsible for an increased leukemia 
risk in a town, and the court is interested in the truth of that 
claim. An epidemiologic study addressing this question is 
designed and conducted.1 Traditional statistical methods 
approach the process of inference as follows: 

1. State a null hypothesis (Ho): There is no effect of 
the proximity to plant on leukemia risk. 

2. Calculate the rarity of the observed geographic 
pattern of leukemia cases under that null 
hypothesis: The measure of “rarity” is measured by 
an index called a “P-value.”2 The P-values for the 
pattern is reported as equal to 0.03. 

3. If observed data are “rare enough” under the 
null hypothesis then “statistical significance” is 
declared. Statistical significance is typically defined 
as a P-value less than 5 percent. As the reported P-
value of 3 percent here is less than this, one “rejects 
the null hypothesis” and declares that the association 
between leukemia risk and power plant proximity 
has been scientifically demonstrated. 

On the surface, the above procedure seems appealingly 
                                                           

1 One aspect of this process which will not be discussed here is how the 
study design or statistical analysis eliminates variables other than distance 
from the plant as determinants of outcome, factors known as “confounders,” 
and whose control is critical to causal inference. 

2 See infra Part II.A. for further discussion. 
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logical and “scientific” (i.e., objective). However, the question 
might arise, where is there room for judgment? The short 
answer is that, in a formal sense, there is none. Judgment makes 
its appearance only when we recognize that the procedure above 
does not, in fact, address the question posed earlier: “What is 
the probability that chance is the explanation for the observed 
pattern of illness around the plant?” The procedure described 
above is a decision rule, not directly addressing the question we 
need answered.3 We will see this as we closely examine the 
logic of standard statistical procedures, starting with the meaning 
of the central statistical index, the P-value. 

A. The P-value 

Introduced as an inferential tool by R.A. Fisher in the 
1920s, the P-value is the central evidential index that undergirds 
the calculations of traditional, “frequentist” statistics.4 Its 
definition is as follows: 

Under the hypothesis of no effect, the P-value is the 
probability of observing a result equal to or more 
extreme than the observed data (relative to the null 
hypothesis). 

This can be written as follows (where Prob=probability): 
Prob (Future observed effect ≥ Current observed 
effect, given that the True effect = 0) 

A graphical counterpart to this equation can be found in 
Figure 1. The “Future” effect refers to an effect that might be 
observed if we exactly repeated the study under the identical 
conditions. When examining this definition carefully, it does not 
have a clear common sense interpretation. To underscore this, 
let us consider the guidance offered in a textbook titled Intuitive 

                                                           
3 See generally Steven N. Goodman & Richard Royall, Commentary, 

Evidence and Scientific Research, 78 AM. J. PUB. HEALTH 1568 (1988); See 
also RICHARD ROYALL, STATISTICAL EVIDENCE: A LIKELIHOOD PARADIGM 1-
33 (Chapman & Hall 1997). 

4 See RONALD A. FISHER, STATISTICAL METHODS FOR RESEARCH 

WORKERS 24-76 (13th ed. 1958). 
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Biostatistics. “Thinking about P-values seems quite 
counterintuitive at first, as you must use backwards, awkward 
logic. Unless you are a lawyer or a Talmudic scholar . . . you 
will probably find this sort of reasoning a bit uncomfortable.”5 

The “backwards” logic of the P-value is related to the fact 
that it is a deductive probability statement. It assigns a 
probability to the data under the assumption that we know the 
null hypothesis to be true. But the question at hand requires an 
inductive statement, a statement about the probability of a 
hypothesis based on the evidence, the reverse or “backwards” 
direction. The difference is equivalent to the contrast between 
the probability of the evidence, assuming a defendant were 
innocent (deductive), and the probability of innocence given the 
evidence (inductive). The route from the P-value to a probability 
of a given claim being right or wrong is circuitous, and not part 
of conventional statistical approaches. 

To see this, let us contrast the P-value with the mathematical 
counterpart of the question posed earlier: given the observed 
effect, what is the chance that the true effect is zero (or 
conversely, non-zero)? This can be written as follows: 

Probability of a claim: Prob (True effect = 0 given the 
Observed effect) 
This probability cannot be calculated with standard statistical 

methods. However, there is an inductive inferential calculus, 
known as Bayes Theorem, about which much has been written 
in application to the law.6 Figure 2 shows Bayes Theorem, first 
written using the legal analogy and then its statistical 
counterpart, where the hypothesis of “innocence” is instead the 
hypothesis of “no effect.” 
                                                           

5 HARVEY MOTULSKY, INTUITIVE BIOSTATISTICS 96 (Oxford Univ. Press 
1995). 

6 See Stephen E. Fienberg & Joseph B. Kadane, The Presentation of 
Bayesian Statistical Analyses in Legal Proceedings, 32 STATISTICIAN 88 
(1983); Donald A. Berry, Inferences Using DNA Profiling in Forensic 
Identification, 6 STAT. SCI. 175 (1991); Donald A. Berry & Seymour 
Geisser, Inference in Cases of Disputed Paternity, in STATISTICS AND THE 

LAW 353-82 (Morris H. DeGroot, Stephen E. Fienberg & Joseph B. Kadane 
eds., John Wiley & Sons 1986). 
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B. Bayes Theorem 

Bayes Theorem is a fascinating mathematical and philosophic 
entity. The mathematics of the theorem are simple and 
incontrovertible, but its implications profound. If we are dealing 
with modeling games of chance, or medical diagnoses or other 
situations where all the relevant probabilities are well described, 
there is no question as to its relevance and correctness. Where 
its application becomes trickier, and more controversial, is in 
the realms of inference highlighted here: statistical and legal. 
The controversy stems from its requirement for a “prior 
probability” of a hypothesis. In the legal realm this hypothesis 
could be one of innocence, and in the scientific arena a 
hypothesis of no effect. Thus, how to assign and then interpret 
probabilities on these hypotheses is controversial. It will not be 
the application of Bayes Theorem that we will focus on here, but 
rather how it illustrates the flaws in logic—and room for 
judgment—in the standard approaches to statistical proof. 

It is worth first contrasting to the Bayesian measure of 
evidence—the Bayes Factor—with the P-values. The Bayes 
factor is simply a comparison of how likely the evidence is 
under two competing hypotheses. It is different from the P-
values in two critical ways. First, it is comparative. Evidence 
that is rare under the null hypothesis is not considered evidence 
against it unless that same evidence can be shown to be more 
common under the competing hypothesis. In contrast, the 
competing or “alternative” hypothesis has no role in calculating 
the P-values. Second, because the Bayes Factor is comparative, 
it can be negative or positive, i.e. support either hypothesis 
relative to the other. In contrast, the P-values is only negative, 
i.e., against the null hypothesis, making it impossible to quantify 
evidence that supports the hypothesis of no effect (or of 
innocence).7 Both of these features are captured in colorful 
quotations from a noted epidemiologist from the 1940’s: 

                                                           
7 See Goodman and Royall, supra note 3, at 1569 (citing Jerome 

Cornfield, Sequential Trials, Sequential Analysis, and the Likelihood 
Principle, 20 AM. STATIST. 18 (1996)); ROYALL, supra note 3, at 68-71. 
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[T]he argument does not seem to accord with what 
would be the mode of reasoning in ordinary rational 
discourse . . . . Suppose I said, “Albinos are very 
rare in human populations . . . . Therefore, if you 
have taken a random sample of 100 . . . and found in 
it an albino, the population is not human.” . . . I 
believe the rational retort would be, “If the 
population is not human, what is it?” . . . With the 
corpus delicti in front of you, you do not say, “Here 
is evidence against the hypothesis that no one is 
dead.” You say, “Evidently someone has been 
murdered.”8 

In comparing standard methods to Bayesian approaches to 
inference, it first must be noted that they are asking different 
questions and have different aims. It is in understanding these 
different aims that we will see why judgment seems to play a 
role in one but not the other. The aim of the Bayesian inference 
is to calculate the probability that a knowledge claim or 
hypothesis is true or false. It does this, however, at a price—a 
price that requires specification of the probability of that same 
relationship in the absence of the current empirical evidence. In 
many instances, that prior probability will be unavoidably 
subjective, and differ among experts, leading to this inferential 
approach being tarred as “subjective” or “nonscientific.” 

The central question that arises is, what would an inferential 
system look like that avoided the seeming subjectivity of Bayes 
Theorem? This was exactly the conundrum faced by R.A. Fisher 
in the 1920s and Jerzy Neyman and Egon Pearson in the 1930s, 
which leads them to develop a new “frequentist” statistical 
approach to this question, the model of which was presented 
earlier.9 

“Frequentist” is a term referring to a definition of 
probability that requires a well defined, mathematically 

                                                           
8 Joseph Berkson, Tests of Significance Considered as Evidence, 37 J. 

AM. STAT. ASS’N 325, 326 (1942) (emphasis in original). 
9 See supra Part II.A. and infra note 11 for a further discussion and 

explanation. 
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justifiable, empirically observable foundation for the calculation 
of the probability. The definition, most powerfully articulated by 
Richard von Mises in the late 1920s, defines probability as the 
relative frequency of objects with a particular trait amidst a large 
collective of otherwise indistinguishable objects, such as the 
fraction of all 60-year olds over 6 feet tall.10 In theory, any 
scientist observing the same collective would measure the same 
relative frequency. This definition represented an effort to put 
probability on scientific par with other fundamental measures of 
nature, like mass, velocity and length. 

Thus, a system of inference based on frequentist probability 
would have to be based on probabilities that were indisputable, 
i.e., governed by clearly defined probability distributions, such 
that any scientist armed with the same distribution would 
calculate the same number. That is a characteristic of deductive 
probabilities: if you accept the premises, you accept the 
subsequent calculations. The notion of a probability of a 
hypothesis is anathema; such a number is not deemed a 
probability at all, since there can be no “long run” or 
“collective” of hypotheses. So the frequentist abandons, at the 
outset, any notion that they will be assessing the credibility of a 
truth claim. Instead, the frequentist is concerned with long-run 
probabilities, i.e., probabilities of possible outcomes, defined 
against a theoretical infinite number of repetitions of an 
experiment. 

The question then becomes, if the frequentist declines to 
calculate the probability of truth, what is the goal of the system 
of traditional statistics? The answer is, to control the number of 
errors over the long run, but not calculate the chance of error in 
any particular case. This was articulated clearly and forcefully 
by Neyman and Pearson in their classic paper: 

[N]o test based upon the theory of probability can by 
itself provide any valuable evidence of the truth or 
falsehood of that hypothesis. 

But we may look at the purpose of tests from another 
                                                           

10 RICHARD VON MISES, PROBABILITY, STATISTICS AND TRUTH 11-29 
(Dover Publ. ed., George Allen & Unwin Ltd. 2d ed. 1957). 
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view-point. Without hoping to know whether each 
separate hypothesis is true or false, we may search 
for rules to govern our behaviour with regard to 
them, in following which we insure that, in the long 
run of experience, we shall not be too often wrong.11 

It is the opening of the above passage that is critical to 
understand. The “theory of probability” referred to here is the 
frequentist definition. Thus, the standard statistical method of 
“hypothesis testing” is roughly akin to a judicial system where 
the goal is to minimize the collective number of incorrect 
verdicts, without regard to whether each individual is guilty or 
innocent. The problem encountered with this is analogous with 
the practice of “profiling” by police; it may indeed identify a 
class of individuals at a higher risk for some behavior, but to 
blindly apply a group characteristic to each member of that 
group is recognized as unjust. A practice that might work “on 
average” can be profoundly and recognizably wrong in 
particular cases. 

The Bayesian definition of probability, in contrast, concerns 
itself precisely with what is eschewed above; the degree of 
belief that a specific hypothesis is true or false. Bayes Theorem, 
as defined earlier, tells us how this can be calculated. It tells us 
that the purpose of evidence, whether scientific or legal, is to 
change the probability that a given hypothesis is true. It tells us 
that if a hypothesis is more or less likely before seeing the 
evidence, it is correspondingly more or less likely afterwards; its 
prior plausibility affects its plausibility after considering the new 
evidence. 

In both the legal and scientific settings, this requires a close 
look at the details of a particular case, instead of applying 
similar rules to all cases. In the legal realm, in a case based on 
circumstantial evidence, a key requirement affecting prior 
probability could be a motive for the crime. In the absence of 
such a motive, the prior probability might be so low that only 

                                                           
11 Jerzy Neyman & Egon S. Pearson, On the Problem of the Most 

Efficient Tests of Statistical Hypotheses, 231 PHIL. TRANSACTIONS ROYAL 

SOC’Y 289, 291 (Series A. 1933). 
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extraordinary circumstantial evidence would be sufficient to 
convict. 

In science the same degree of evidence can result in a 
different conclusion if the prior probability is different. The 
prior probability requires a close examination of many of the 
factors mentioned above, such as the biologic plausibility of the 
relationship, and the strength of prior empirical evidence. The 
reliability of that evidence is determined partly through the 
strength of the design and conduct of the experiments that 
produced it. The strength of an experiment typically is not 
describable with numbers. One must rely on expert judgment to 
help assess it. Various scientific groups have come up with 
crude aids to facilitate such assessment, such as the hierarchy of 
evidence used by the U.S. Preventive Services Task Force.12 

In addition to the notion of prior probability, another 
component missing from standard approaches is a formal notion 
of statistical “evidence,” the only language is that of procedural 
error rates.13 In contrast, the Bayes Factor is a measure of 
evidence with appealing conceptual simplicity. It allows us to 
make the connection between traditional P-values and posterior 
probabilities. Table 2 shows a Bayesian-frequentist “Rosetta 
Stone,” in that it demonstrates the maximum effect that a result 
with a given P-value could have on the prior probability of a 
hypothesis when viewed through a Bayesian lens.14 Even though 
these results represent maximum effects, they are far lower than 
many judges, and even scientists, are aware of. For example, a 
P-value of 0.03 raises the probability of a 50:50 hypothesis to at 
most 91 percent, i.e., there is still almost a one-in-ten chance 
that it is wrong. If a hypothesis is implausible or initially 
unlikely, less than 25 percent probable, the table tells us that a 
P-value of 0.03 cannot raise the probability of such a hypothesis 
                                                           

12 See infra, Table 1 for an illustration of the hierarchy of evidence. 
13 See Goodman, supra note 3, at 1569-70; Steven N. Goodman, 

Towards Evidence-Based Medical Statistics, 1: The P-Value Fallacy, 130 
ANNALS OF INTERNAL MED. 995 (1999); Steven N. Goodman, Towards 
Evidence-Based Medical Statistics 2: The Bayes Factor, 130 ANNALS OF 

INTERNAL MED. 1005 (1999). 
14 See infra, Table 2. 
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to being more than 78 percent probable, i.e., a 22 percent 
chance of being wrong. Even if the P-value is 0.01, a hypothesis 
starting with 25 percent probability still has a 10 percent or 
greater chance of being false. 

This table shows us both that (a) the prior probability is a 
critical factor in determining the probability that an observed 
relationship is true, given the evidence, and (b) that the 
evidential force of P-value is lower than their actual value 
suggests, and has little relationship to the probability of the truth 
of the null hypothesis.15 Finally, this table only applies to 
“ideal” experiments, i.e., those with the strength of a 
randomized clinical trial. If these P-values are derived from 
observational studies, which are the typical designs used in toxic 
tort cases, the effect of the statistical evidence is weaker. 

II. JUDGMENT AND SPECIFIC CAUSATION 

Specific causation is another domain in which mechanistic 
rules have seemingly eliminated the need for judgment. It is 
commonly known that for an exposed individual, a condition 
passes the “more likely than not” criteria for specific causation 
if the relative risk exceeds 2 (or RR>2). The thinking behind 
this is based on a very simplistic model of causation. If the 
exposure doubles the baseline risk of contracting a condition, 
and an exposed person has the condition, then half of his or her 
risk is thought to be due to the baseline risk with an equal 
degree of additional risk due to the exposure. This additional 
risk is called the “attributable risk” in the exposed individual. 
Hence, at relative risks higher than 2, this attributable risk will 
be larger than the baseline risk, and the individual is regarded as 
“more likely than not” to have incurred the condition from his 
or her exposure. 

Several epidemiologists have written eloquently on the flaw 
in this logic, which is easily demonstrated if one introduces a 
time dimension into the disease process.16 Consider a process 

                                                           
15 See generally infra, Table 2. 
16 See James M. Robins, Should Compensation Schemes be Based on the 
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that advances the appearance of disease by a decade. Everyone 
exposed who has developed the condition has lost 10 years of 
disease-free life, but there are no “excess cases” of the disease, 
since no one develops the disease who would not have 
otherwise. In such a situation, the relative risk is 1.0, but the 
exposure has had an adverse health impact in 100 percent of 
exposed individuals with the condition. 

Figure 4 shows us that the probability that the exposure 
played an important role in the disease’s occurrence cannot be 
discerned from the data without some knowledge about the 
mechanism by which the disease is produced.17 The upper panel 
of the figure shows the situation described above, in that each 
individual has had the time of their illness advanced by 10 
years.18 

Thus, in an epidemiologic study, we would find exposed 
individuals with the disease between the ages of 40 to 80, 
whereas individuals not exposed to the disease are found to be 
between the ages of 50 to 90. We would not be able to tell from 
such data whether the exposure advanced the disease’s 
appearance by a decade for each person, or whether the person 
who would have developed their disease at age 80 instead 
developed it at age 40, leaving everyone else unaffected. In both 
cases, there is a collective loss of four decades of disease-free 
life. But without knowledge of how the disease mechanism 
works, we cannot know how it is distributed among the 
individuals. So the fraction of individuals affected by the 
exposure—sometimes called the “probability of causation”—in 
this case varies from 20 percent to 100 percent.19 Only if we 
had some measurable biomarker that told us the etiology of the 

                                                           

Probability of Causation or Expected Years of Life Lost?, 12 J. L. & POL’Y 

537 (2004); Sander Greenland & James M. Robins, Epidemiology, Justice 
and the Probability of Causation, 40 JURIMETRICS 321 (2000); Sander 
Greenland, Relation of Probability of Causation to Relative Risk and 
Doubling Dose: A Methodologic Error That Has Become a Social Problem, 
89 AM. J. PUB. HEALTH 1166 (1999). 

17 See infra, Figure 4. 
18 Id. 
19 See Robins, supra note 16, at 537-48. 
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disease in a particular person could we discern empirically 
which of these processes were operating. 

This example also illustrates another problem with using the 
relative risk when time is a factor, as it almost always is. Let us 
assume that the individuals in question were exposed on the job, 
and that they were all 30 years old at the time. Let us imagine 
that an epidemiologic study is immediately mounted, and the 
individuals are followed forward in time, along with a 
similar-sized cohort of colleagues at work who were not 
exposed. After 20 years of follow-up, 2 cases have developed in 
the exposed group, and 1 in the unexposed, for a relative risk of 
2. After 30 years, the corresponding numbers are 3 and 2, for a 
relative risk of 1.5. After 40 years, the relative risk is 4 over 3, 
after 50, 4 over 5, and finally, after 60 years, the relative risk is 
5 over 5, or 1.0, since 5 subjects in both groups have developed 
the disease. 

We could change the numbers here so they are as high as we 
wish at the beginning. The point is that the relative risk is not a 
constant number, and will vary according to how much time the 
subjects are observed. It will typically be highest with short 
follow-ups, and decrease over time. This is another reason why 
relative risk is a poor reflection of the likelihood that an illness 
observed in an exposed person is due to that exposure. In 
general, the relative risk serves as a lower bound on the fraction 
of cases induced by the exposure, but the upper bound is always 
100 percent. 

CONCLUSION 

Simple rules governing either statistical or causal inference 
are invariably misleading or outright wrong. Scientific experts 
or legal arguments that invoke such rules are making implicit 
assumptions, which may not be defensible. Judges must be 
aware that the probability of the truth of causal claims is not 
calculable from the data alone, and any claim to the contrary is 
made out of ignorance or an intent to deceive. While judges 
cannot be expected to become methodologic experts themselves, 
they can play a critical role in eliciting the foundations for 
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judgments that are implicit in any causal claim. These 
foundations include: 

For general causation: 
1. The prior plausibility of the hypothesis being 

considered derived from prior studies, known 
biology and from mechanistic reasoning. 

2. The strength of the design and conduct of the 
experiments in the evidence base. 

3. The internal coherence of the evidence base with 
a proposed or known biologic mechanism. 

For specific causation: 
1. How well established is the biologic mechanism 

for effect. 

2. Whether there is any biologic marker that allows 
inference about disease etiology in a specific case. 

3. If the RR>2 criterion is being used, whether the 
disease is an all-or-none phenomenon within the 
time period of observation (e.g., symptoms of 
food poisoning shortly after a group event), or if 
it emerges over an extended time with the timing 
and fact of occurrence both being relevant. If the 
latter scenario is true, the RR>2 criterion is 
invalid. 

The principles above apply with particular force to the toxic 
torts arena where one quite frequently encounters weak designs 
and poorly understood biologic processes, which translate into 
low prior probabilities and weak evidence. While rigorous 
thinking, formal analysis and systematic approaches to synthesis 
are hallmarks of the scientific approach, both scientific and legal 
judgment play prominent roles in ascertaining whether a claim 
of injury due to toxic exposure is likely to be true, and the 
nature of judgments being applied by the experts must be 
understood by the presiding judge. 
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Table 1: Hierarchy of Clinical Research Designs as Per the US 
Preventive Services Task Force 

Critical research designs at the top of the table generally 
produce evidence of higher reliability or “strength” than those 
below.20 

 
EVIDENCE 

GRADE 
DESIGN 

I 
Evidence from at least one properly 

randomized controlled trial 

II-1 
Evidence from at least one well-designed, 

non-randomized controlled trial 

II-2 
Evidence from well-designed cohort or 
case-controlled studies, preferably from 
more than one center or research group 

II-3 
Evidence from multiple time series with or 

without the intervention 

III 
Opinions of respected authorities based on 
clinical experience, descriptive studies and 
case reports or reports of expert committees 

 

                                                           
20 Adapted from Russell P. Harris et al., Current Methods of the US 

Preventive Services Task Force: A Review of the Process, 20 AM. J. 
PREVENTIVE MED. 21 (2001). 
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Table 2: A Frequentist-Bayesian Translation Table 

Column 3 gives starting (or “prior”) probabilities of non-null 
hypotheses, and Column 4 shows the maximum degree to which 
a given P-value can move a non-null hypothesis from a given 
starting probability to a final probability. 

 

  Increase in Probability of Ha 

P-value 
Strength of 
Evidence From (%) To at Most (%) 

0.10 Weak 
25 
50 
83 

56 
79 
95 

0.05 
Moderate 
to Weak 

25 
50 
74 

69 
87 
95 

0.03 Moderate 
25 
50 
67 

78 
91 
95 

0.01 
Moderate to 

Strong 

25 
50 
40 

90 
96 
95 

0.001 
Strong to 

Very Strong 

25 
50 
9 

98.5 
99.5 
95 
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Figure 1: Graphical Representation of the P-value 

The curve shows the probability of each possible outcome under 
the null hypothesis of no effect. The P-value is the probability of 
the observed outcome plus all more extreme outcomes upon 
exact repetitions of an experiment. 
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Figure 2: Bayes Theorem 

The vertical line in the Bayes Factor equation should be read as 
“given that” or “if.” 

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠14444424444 3

a.)"Legal" Version of Bayes Theorem

Odds of innocence Odds of innocence Prob(Evidence | Innocent)
 = ×

after seeing evidence before seeing evidence Prob(Evidence | Guilty)

Bayes Factor

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

4

1444442444443

b.) Statistical Version of Bayes Theorem

Odds of No Effect Odds of No Effect Prob(Data | No effect)
= ×

after seeing data before seeing data Prob(Data | Some effect)

Bayes Factor
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Figure 3: Graphical Representation of the Calculation of the 
Attributable Risk (ARe) in Exposed Persons 

If the risk is more than doubled in the exposed group then 
ARe>50% of the total risk. 

 

Unexposed Exposed

In
ci

de
nc

e ARe 



GOODMAN OUT 3/3/2007  1:35 AM 

 JUDGMENT FOR JUDGES 111 

Figure 4: Illustration of Different Patterns of Causation with the 
Identical Patterns of Epidemiologic Data 

In Scenario 1, 100 percent of exposed subjects with disease lose 
a decade of life. In Scenario 2, 20% of exposed subjects with 
disease lose 50 years of life.21 

 
 AGE OF DISEASE OCCURRENCE 

SCENARIO 1 40 50 60 70 80 90 

Exposed subjects 1 1 1 1 1  

Identical subjects, not exposed  1 1 1 1 1 

 

SCENARIO 2 40 50 60 70 80 90 

Exposed subjects 1 1 1 1 1  

Identical subjects, not exposed  1 1 1 1 1 
 

 

                                                           
21 Adapted from Robins, supra note 16, at 542. 
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